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Previous research has suggested that isolated, initially non-axisymmetric vortices in
two-dimensional flows tend to become axisymmetric, in a coarse-grained sense, by
purely inviscid mechanisms. That research, however, considered only vortices with
broadly distributed vorticity. In this paper, it is shown that vortices with sufficiently
steep edge gradients behave in a radically different way; in particular they can remain
non-axisymmetric, apparently indefinitely. Such vortices, it is argued, are more typical
in inviscid two-dimensional flows than the broadly distributed vortices previously
considered, and hence the tendency for vortices to become axisymmetric is not
generic to these flows.

1. Overview
This paper is concerned with the conditions under which an isolated vortex in

a two-dimensional, inviscid flow remains indefinitely non-axisymmetric. Numerous
previous works have suggested that vortices tend to become axisymmetric, in a
coarse-grained sense, by cascading non-axisymmetric disturbances to ever finer scales,
where they become homogeneously distributed. This cascade and homogenization
both take place as a result of the differential rotation of the flow field at the periphery
of the vortex.

Several counter-examples to this scenario have been reported in the literature, but
no systematic study has been conducted to determine what limits the tendency for
axisymmetrization. In the present work, such a systematic study is conducted using a
generic class of initial vortex profiles. This class is characterized by a smoothly varying
interior and an abrupt edge, at which the vorticity falls precipitously to zero. Such an
abrupt edge is readily created in an inviscid fluid when a vortex is subjected to an ex-
ternal shear or strain flow, e.g. the flow created by another vortex some distance away.

Below, extended simulations using a novel, fast numerical algorithm indicate that
vortices in this class remain persistently non-axisymmetric. However, the degree to
which they remain so is shown to depend on the jump in vorticity at the edge of
the vortex. In effect, sharp gradients at the edge of a vortex appear to neutralize the
effect of small-scale disturbance vorticity outside the vortex. Basically, the broader the
initial vortex edge, the more axisymmetric the vortex ultimately becomes. This may
explain the strong tendency for axisymmetrization reported in earlier works; those
works considered only broad initial vortices.

The paper is structured as follows. Section 2 reviews previous work on this prob-
lem. Section 3 describes the class of initial vortex profiles studied, briefly outlines the
numerical method employed, illustrates several simulations, and summarizes, quantita-
tively, how the final departure from axisymmetry depends on the initial vorticity jump
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at the edge of the vortex. Section 4 links the observed persistent non-axisymmetry
with the existence of nearby, stable steadily rotating equilibrium vortices, and the
paper concludes with a discussion of the wider applicability of the present results.

2. Background to the problem
The idea of ‘axisymmetrization’ (Melander, McWilliams & Zabusky 1987) grew

out of an effort to explain why vortices in numerical simulations of two-dimensional
turbulence often appeared to be close to circular in form (McWilliams 1984, 1990).
Melander et al. (1987) examined in detail the numerical evolution of a single, smoothly
varying, elliptically deformed vortex within a doubly periodic domain. They demon-
strated that the vortex relaxes to a state close to axisymmetric on a time scale of
several vortex rotations, a time scale much less than that associated with the numerical
diffusion employed.

The initial stages of this process are illustrated in figure 1 for a Gaussian vortex (not
the same as considered by Melander et al. 1987, but exhibiting qualitatively similar
behaviour). The low-level vorticity is twisted around the vortex core at early times as
a result of the increasing angular velocity inwards. The tongues of vorticity so created
subsequently interact with the vortex core, leading to rapid axisymmetrization, or
nearly so. At this stage, there is a huge mass of fine-scale vorticity surrounding the
vortex core, and the subsequent evolution is sensitive to numerical diffusion. Certainly,
diffusion does not help the vortex to remain non-axisymmetric.

These findings were argued to be consistent with many direct numerical sim-
ulations of two-dimensional turbulence as well as real experiments, and as such
they motivated further work to understand the fundamental role played by axisym-
metrization in two-dimensional vortex dynamics (see Whitaker & Turkington 1994;
Yao & Zabusky 1996; Koumoutsakos 1998; Bassom & Gilbert 1998 and references
therein). For example, Whitaker & Turkington (1994) have demonstrated that ax-
isymmetric vortices are ‘most-probable’ equilibrium states in the statistical-mechanical
theories of Miller (1990) and Robert (1991); this implies that a non-axisymmetric
vortex, even an elliptical patch, will relax to an axisymmetric vortex, according to
the theory, if one waits long enough. Those theories employ an ergodic mixing hy-
pothesis to skip over the complex, inviscid evolution between the initial and final
flow states, linking those states instead by a set of flow invariants (like energy,
angular momentum, and the initial vorticity measure; see Turkington 1998 for back-
ground).

Recently, the behaviour of small perturbations to an axisymmetric vortex was
studied analytically by Bassom & Gilbert (1998). They were able to prove that, within
linear theory, such perturbations cascade to small scales and homogenize under the
action of differential rotation (the inner part of the vortex rotating more rapidly than
the outer part). Thus, such vortices tend to become axisymmetric. Their result further
strengthens the claim of Melander et al. (1987) that axisymmetrization is a generic
feature of vortex evolution, in the absence of external influences.

But the first indication of non-universality was suggested by an inviscid numer-
ical simulation starting from a vortex with a steeper edge (Dritschel 1989a). The
vortex considered began to axisymmetrize but then appeared to stabilize about a
non-axisymmetric form. This form was shown to be close to a linearly stable equi-
librium form. More recently, this case was re-examined by Koumoutsakos (1998),
who confirmed that the vortex remains non-axisymmetric for many vortex rotation
periods using an entirely different inviscid numerical algorithm.
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Figure 1. The evolution of a Gaussian vortex initially deformed into a 2:1 ellipse. The simulation
is conducted at extremely high resolution using the numerical algorithm described in §3 in a doubly
periodic box. A basic grid of 5122 is used, but vorticity structures are retained down to a tenth of
the grid scale. This resolution is used in all subsequent simulations except where noted. The times
shown are t = 0, 3, 11, 18, 27 and 100 (a–f ), in units of T = 4π/ωmax . A time step of ∆t = 0.025
was used in all simulations; the value of ∆t is not constrained by numerical stability.
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The above, however, does not contradict the findings of Bassom & Gilbert (1998),
who could prove axisymmetrization only for vortices that were not ‘too flat’ at
their centres. Specifically, the vorticity ω(r) had to behave like 1 − αr2 + O(r4), with
α > 0, where r is radial distance. The profile considered in the reported exception to
axisymmetrization (Dritschel 1989a) had α = 0. For α = 0, Bassom & Gilbert (1998)
suggest that the differential rotation may be too weak at the vortex centre to cause
axisymmetrization.

Below, a new, more serious exception is reported for a class of vortices having
α > 0. These vortices, however, are not as smooth as those considered by Bassom
& Gilbert (1998), and again fall outside the scope of their analysis. Specifically, the
vortices considered have a discontinuity at their edges, and we explore the degree to
which non-axisymmetry persists as a function of the magnitude of this discontinuity.

One might consider this to be artificial, but it is arguably a good model for a
vortex in an inviscid fluid. Fluid elements tend to stretch on average in all but the
most idealized flows, and since vorticity is a materially conserved quantity, vorticity
isolevels tend to stretch on average, implying, by continuity, that vorticity gradients
tend to grow on average. A dramatic example of this is ‘vortex stripping’ (Dritschel
1989b; Legras & Dritschel 1993a,b), wherein low-level vorticity at the periphery of a
vortex is torn away by external strain, such as that arising from a vortex further afield,
leaving behind a virtual discontinuity at the vortex edge. This phenomenon is greatly
affected by diffusion processes, numerical or real (Mariotti, Legras & Dritschel 1994;
Yao, Dritschel & Zabusky 1995), which may explain the smooth vortex profiles seen
in early simulations of two-dimensional turbulence. Without such diffusion, vortices
tend to develop and maintain sharp gradients: an example is shown in figure 2 for
a set of vortices starting with Gaussian vorticity profiles (the numerical algorithm
employed is described in the next section). The apparent decrease in the number of
vorticity isolevels by the end of the simulation is not due to diffusion; in reality, there
is no decrease (since vorticity is conserved), instead the isolevels at each vortex edge
have collapsed, forming virtual discontinuities.

3. Results
Following Melander et al. (1987) and subsequent works on axisymmetrization, we

examine initially elliptical vortices, with each vorticity isolevel having the same aspect
ratio λ > 1. The initial profile is defined in terms of the area A(ω) within each isolevel
ω = constant. In this paper, we consider the family of ‘parabolic’ vortices,

A(ω)

π
=

1− ω/ωmax

1− a ,

with a discontinuity in ω at ω = aωmax , where 0 6 a < 1. For an axisymmetric vortex,
we would have

ω(r) = ωmax [1− (1− a)r2]

for 0 6 r 6 1, and ω(r) = 0 otherwise. Only the case a = 0 is free from a discontinuity
at the vortex edge. The limit a→ 1 corresponds to the vortex patch, and in that limit
the vortex rotates steadily without change of form (Kirchhoff 1876) and is linearly
stable for λ < 3 (Love 1893).

Here, we consider λ = 2, again following Melander et al. (1987). This is not a
small deformation, and it generally leads to nonlinear behaviour, precluded from
the analysis of Bassom & Gilbert (1998). As discussed in §4, the nearly circular
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limit of λ → 1 deserves closer scrutiny to understand the competing effects of small
departures from axisymmetry and tight edge gradients. This competition is the key
to understanding axisymmetrization.

Numerical simulations have been performed for a range of a values and numerical
resolutions. The simulations have been conducted with the new ‘Contour-Advective
Semi-Lagrangian’ (CASL) algorithm (Dritschel & Ambaum 1997), which combines
the most efficient and accurate parts of the Lagrangian contour dynamics/surgery
method (Dritschel 1989a) and the Eulerian pseudo-spectral method (Gottlieb &
Orszag 1977). The CASL algorithm represents the vorticity as material contours,
which are advected by the velocity field interpolated from an underlying grid. That
velocity field is obtained using the standard machinery of a pseudo-spectral method,
i.e. FFTs, spectral inversion of ∇2ψ = ω for the streamfunction ψ, spectral calculation
of the velocity field u = −∂ψ/∂y, v = ∂ψ/∂x, and inverse FFTs to get u and v on
the grid. The advection of vorticity contours corresponds to solving Dω/Dt = 0.
This contour advection avoids the need for numerical diffusion to maintain stability,
frees one from the CFL constraint on the time step, and permits a much finer, more
accurate representation of the vorticity. In the CASL algorithm, vorticity features are
retained below grid scale, and dissipation occurs only to filamentary vorticity at a
tenth of the grid scale – sharp gradients are never smeared out. This results in a
dramatic improvement in solution accuracy compared to conventional methods and a
great savings in computer time; this is demonstrated in Dritschel & Ambaum (1997)
and Dritschel, Polvani & Mohebalhojeh (1998a).

The contour representation implies that the vorticity is formally piecewise-constant,
that is, the vorticity jumps across each contour. In practice, however, the contours
must be momentarily converted to gridded values for use in obtaining the velocity
field, and this implies that the vorticity discontinuities are rounded off at the grid scale.
It turns out though that this fine-scale vorticity contributes negligibly to the advecting
velocity field (Dritschel & Ambaum 1997). The bottom line is that it is accurate to
represent smooth vorticity distributions in this way (see Legras & Dritschel 1993b;
DiBattista & Polvani 1998; and Dritschel et al. 1998a).

In the simulations below, the vorticity profile is discretized into n steps, with n = 20
used most often. Equal jumps in vorticity ∆ω are used at each contour except for the
outer edge; the discretization ensures that at each contour the discretized vortex has
the same circulation as the continuous vortex. Specifically, the area of contour j is
given by Aj = jπ/n, j = 1, . . . , n, and the vorticity jumps are ∆ω = (1 − a)ωmax/n
except at the outer edge, where the jump is equal to aωmax + ∆ω/2. Most of the
simulations have been conducted using a 5122 grid, and in all cases, dissipation
of filamentary structures by ‘surgery’ (Dritschel 1989a) takes place at one tenth
of the grid scale. This resolution is shown to be adequate below. Without loss of
generality, we take ωmax = 4π, so that time t = 1 corresponds to the rotation
period of a fluid element at the centre of an axisymmetric vortex. The time step
is chosen to be ∆t = 0.025; the results are not sensitive to ∆t for values smaller
than this. Each contour is represented by a variable number of points (connected by
local cubic splines), whose local density is proportional to the square root of local
curvature. The dimensionless node separation parameter µ = (0.4∆x)1/2, where ∆x is
the grid scale, and the box has dimensions 2π × 2π (the mean radius of the vortex
is 1). For the conversion of the vorticity contours to gridded values, a grid twice
as fine is used, with 9-point averaging to produce vorticity values on the original
grid (see Dritschel & Ambaum 1997 for full details of these standard parameter
settings).
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(a)

Figure 2. (a) For caption see facing page.
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(b)

Figure 2. (b) The evolution of a set of initially Gaussian vortices in a doubly periodic box. All
of the vortices are identical, except half have positive vorticity and half have negative vorticity. (a)
The evolution in grey-scale form, at times t = 0, 4, 12, 24, 38 and 200, in units of T = 4π/|ω|max .
(b) The initial and final times in contour form. Eight contours are used to represent each vortex
initially (see left panel, which shows the actual contours (which overlap in places), not the field
isolevels); the apparent decrease in the number of contours by the end of the simulation is due to
the stripping of low-level vorticity. The resultant jump in vorticity at the edge of each vortex ranges
between a third and two thirds of |ω|max for nearly all vortices.

Figure 3 shows the vorticity contours at t = 2, 8, 20 and 100 from three simulations,
(a) for a = 0, (b) for a = 0.2 and (c) for a = 0.4. As a increases, the discontinuity at the
vortex edge increases, and this enables the vortex to better resist axisymmetrization.
In all three cases, the vortex equilibrates about a non-axisymmetric form (quanti-
fied below). Even when a = 0, the vortex edge is steep enough to avoid complete
axisymmetrization (contrast this with the initially Gaussian vortex in figure 1). In
all cases, the initial evolution is qualitatively similar: the outer tips of the vortex
rotate more slowly than the inner core, creating encircling tongues of vorticity. These
tongues carry less and less circulation for increasing a, even though they contain
higher amplitude vorticity. For a>∼ 0.6, no tongues at all are produced – see figure 4
for a = 0.6. This is because the vortex is then close to a rotating equilibrium form
(these have been computed and have been found to be linearly stable, see §4 below),
and the disturbances to this equilibrium are too small to be convected away. Basi-
cally, the equilibrium vortex is surrounded by a small zone of trapped fluid, bounded
externally by a separatrix. The separatrix consists of closed curves that intersect at
critical points, i.e. points where the velocity vanishes in the frame rotating with the
equilibrium vortex. If the disturbance to the equilibrium form is too large, fluid can
escape from the trapped zone around the vortex, which is what is happening in the
simulations shown in figure 3 at early times.

The subsequent evolution for a < 0.6, not shown in detail, consists of the re-
peated interaction of the vorticity tongues with the vortex core. This leads to partial
axisymmetrization. Each interaction leaves the external disturbance vorticity more
spread out and at finer scale, so that each subsequent interaction affects the vortex
core progressively less. In these cases, the straining field induced by the vortex core
efficiently stretches and scrambles the disturbance vorticity, rendering it practically
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(a) (c)(b)

Figure 3. The evolution of three different initial vortices: (a) for a = 0, (b) for a = 0.2 and
(c) for a = 0.4. Time proceeds downwards; the times shown are t = 2, 8, 20 and 100.

passive (note, the disturbance vorticity is not removed until it has reached a tenth
of the grid scale, i.e. about a thousandth of the vortex radius, a scale which is far
smaller than in any previous simulation of this process; higher resolution is considered
immediately below).
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Figure 4. The evolution of an initial vortex with a = 0.6. Time proceeds from left to right (t = 9,
20 and 100 are shown). The differential rotation of the vortex here causes initial disturbances to the
underlying equilibrium to break internally; this breaking however has only a minor effect on the
gross properties of the vortex. With increasing edge vorticity jump, vortices display progressively
less internal wave-breaking.

ng λ̄

64 1.265
128 1.290
256 1.299
512 1.299

1024 1.284

Table 1. Dependence of λ̄ on the grid resolution ng . Note: These results were obtained for the

case a = 0, with n = 20 contours. The small, unsystematic variations in λ̄ are principally due to
uncontrollable differences that develop after long times in systems that are inherently unpredictable.

The degree of axisymmetrization is quantified by computing the mean aspect ratio
of the vortex core, defined here as the vorticity ω > (1 + a)ωmax/2, a value midway
between the peak and edge values. That aspect ratio λc is computed as in Melander
et al. (1987) and Dritschel (1989a) using the expression

λc =

(
J + R

J − R

)1/2

where J = J20 + J02, R = [(J20 − J02)
2 + 4J2

11]
1/2, and Jmn =

∫∫
xmynω(x, y)dxdy,

restricted as above.
Figure 5 shows first the evolution of λc for the case a = 0 (no discontinuity at the

vortex edge); three curves are drawn, corresponding to variations in the numerical
resolution. The bold line shows the results obtained using n = 20 contours and a
basic grid of 5122 (the simulation shown in figure 3a), the dashed line shows the
effect of doubling n, while the thin solid line shows the effect of halving the grid
size (and thus the dissipation scale). These variations affect only the details of the
evolution; the time-mean values of λc over the last 10 units of time are λ̄ = 1.299,
1.296, and 1.284, respectively. Moreover, results for a 16-fold range in grid sizes
are given in table 1 to emphasize that the value of λ̄ is not sensitive to numerical
resolution, i.e. to the presence or not of thin filamentary structures surrounding the
vortex.
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Figure 5. The evolution of λc for the case a = 0 and for different numerical resolutions. The bold
line is for n = 20 contours and a 5122 grid, the thin line is for twice as many contours, and the
dashed line is for twice as many grid points in each direction.

Figure 6 compares the evolution of λc for several vortices, a = 0.8 (top), a = 0.4
and a = 0 (middle), and the Gaussian vortex in figure 1 (bottom). The case a = 0.8
does not exhibit wave-breaking, externally or internally, but the aspect ratio displays
strong, nearly regular oscillations, no doubt related to the linear wave dynamics on the
underlying equilibrium vortex. The other cases exhibit complex behaviour, precipitated
by the initial ejection of tongues of vorticity; nonetheless, they all apparently settle
down to a near-equilibrium vortex with small oscillations. The aspect ratio of the
Gaussian vortex reaches unity several times (when the semi-major and semi-minor
axes exchange); in a time mean, the vortex is indistinguishable from a circular vortex.
It is expected that the small remaining disturbances in this case will decay away
according to the linear analysis of Bassom & Gilbert (1998).

The principal result of this paper is shown in figure 7, which shows how the late
time-mean aspect ratio λ̄ varies with the dimensionless jump in vorticity at the vortex
edge a. When a = 1, the vortex is an elliptical patch, and λ̄ remains unchanged at 2.
As a decreases, so does λ̄, because more disturbance vorticity is available to interact
with the vortex core. However, even at a = 0, λ̄ remains significantly greater than 1.
The vorticity profile is still steep enough to resist complete axisymmetrization.

4. Discussion
The steepness of the vortex edge is seen to control the extent to which a vortex

axisymmetrizes. This factor was overlooked in many previous studies of this process,
most probably because early numerical simulations suggested that vortices in two-
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Figure 6. The evolution of λc for several initial vortices; from top to bottom, the curves correspond
to a = 0.8, a = 0.4, a = 0, and the Gaussian vortex in figure 1 (distinguished also by a bold line).
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Figure 7. The average of λc over the time interval [90, 100] for simulations conducted with a = 0,
0.1, 0.2, . . . , 0.9. Also shown is the trivial result for a = 1, an elliptical patch, which preserves its
aspect ratio.

dimensional turbulence tend to have broad profiles (cf. figure 11 from McWilliams
1990). The role of numerical diffusion in creating this picture, however, was under-
estimated (see remarks in Dritschel 1993; Mariotti et al. 1994; and Yao et al. 1995).
The image shown in figure 2, for inviscid two-dimensional turbulence, is strikingly
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Figure 8. Regime diagram for steadily rotating parabolic vortices with a discontinuity at ω = aωmax .
The equilibria are found by prescribing the core aspect ratio λc (as defined in the text). The numerical
procedure is described in Dritschel (1995). Equilibria can be found below and to the right of the
dashed curve (corresponding approximately to the limiting equilibria having corners (and therefore
critical points) on their outer boundaries). Linearly stable equilibria can be found below and to
the right of the bold curve. The stability has been calculated as described in Dritschel (1995); the
marginal stability curve is accurate to within the plotted line width. The diamonds are the points
from figure 7, i.e. the late-time mean λc values for each simulation conducted.

different from the images generated by conventional numerical simulation methods,
yet it is the natural consequence of kinematic stretching, without diffusion, in these
flows. One can conclude from such an image that broad vorticity profiles are dis-
tinctly unnatural, and hence, from the present work, that vortices in general do not
axisymmetrize.

The persistence of non-axisymmetry appears to be intimately connected with the
existence of underlying, nearby, stable equilibrium vortices. Dritschel (1989a) and
Dritschel & Legras (1991) have computed such vortices and have determined their
linear stability. They found stable equilibrium vortices only for sufficiently steep edge
gradients, depending on the departure from axisymmetry. The greater this departure,
the steeper the edge has to be. For the class of vortices examined in the present work,
the domain of (linearly) stable equilibria in the (a, λc)-plane is shown in figure 8 (below
and to the right of the bold curve). Also plotted in figure 8 are the data points from
figure 7 – note that they all lie in the stable regime, except when a 6 0.1 (for reasons
given below). The idea here is that the numerically simulated vortices equilibrate
around one of the stable equilibria. This is made more convincing by figure 9, which
compares several of the simulated and equilibrium vortices having the same a and λc
values. The comparison is all the more remarkable when one realizes that the vortices
compared do not have exactly the same area between vorticity contours (some area
near the outer edge has been lost by the simulated vortices); this is particularly true
for small values of a and explains why the data points for a = 0 and a = 0.1 in
figure 8 are shifted too far to the left (the appropriate equilibrium vortex would have
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Figure 9. Comparison of the steadily-rotating equilibria (top row) with the corresponding simulated
vortices (bottom row) for a = 0.2, 0.4 and 0.6 (left to right). The vortices have the same aspect
ratios (the late-time mean aspect ratio of the simulated vortices is used to make the association).

a bigger value of a, i.e. a bigger vorticity jump at its edge). If this were corrected
for, e.g. by finding equilibria with the same area between contours as the simulated
vortices, the comparison would be even better. The upshot is that vortices can evolve
into stable, non-axisymmetric vortices, which may therefore persist indefinitely.

The limiting case of a nearly axisymmetric vortex, considered by Bassom & Gilbert
(1998) is more subtle, and deserves closer scrutiny. First of all, almost all perturbations
from an axisymmetric state lead to unsteady behaviour. Though there may be an
underlying equilibrium, the disturbances to this equilibrium may be of comparable
amplitude; this appears to be true for almost all perturbations. In this case, like
the Gaussian vortex considered in figure 1, enough disturbance vorticity is present
to enable axisymmetrization to take place. However, if one were to first determine
a slightly non-axisymmetric equilibrium, and then introduce disturbances of much
smaller amplitude, one might find that axisymmetrization does not take place. Not
all vorticity profiles admit equilibria; one must ensure that, in the frame of reference
rotating with the vortex, the (hyperbolic) critical points where the velocity field
vanishes lie completely outside the vortex – this is most easy to ensure for a compact,
steep-edged vortex. It appears that this problem is analytically tractable using the
techniques developed by Bassom & Gilbert (1998).

Although it is not possible to claim, definitively, that a generic class of vortices may
never axisymmetrize on the basis of numerical simulation alone, the present results
at least indicate that axisymmetrization as predicted by the statistical theory (cf.
Whitaker & Turkington 1994) can only occur on extraordinarily long time scales. In
geophysical fluid dynamics, a main application area for research on two-dimensional
vortex dynamics, vortex isolation over such time scales never occurs, and thus slow,
statistical axisymmetrization (if it takes place at all) is not relevant. The statistical
‘theory’ is itself not definitive on this point, since the ergodic mixing hypothesis on
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which it is based remains unproved (and questionable – see e.g. Sommeria, Staquet &
Robert 1991; Chen & Cross 1996; and Brands 1998).

Finally, the persistence of non-axisymmetric vortices can be expected in more gen-
eral, three-dimensional, rotating, stably stratified flows (e.g. the Earth’s atmosphere
and oceans). The two-dimensional flow considered in this paper is the lowest-order
approximation to the true three-dimensional flow (and sometimes a misleading one,
see Dritschel, de la Torre Juárez & Ambaum 1998b), but it shares a number of
common features, including a materially conserved advected quantity (potential vor-
ticity) and purely horizontal motion (motion parallel to stratification surfaces). In
both flows, horizontal straining generates sharp gradients at the edges of vortices,
and hence vortices in three-dimensional rotating, stably stratified flows may resist
axisymmetrization for the same reasons their two-dimensional counterparts do.

In summary, sharp vorticity gradients are generic to inviscid flows. These gradients
both protect vortices from external influences and enable non-axisymmetric deforma-
tions to persist for long times, perhaps indefinitely. Diffusion processes, by reducing
edge gradients, make a vortex more susceptible to axisymmetrization, which may
explain why nearly-axisymmetric vortices had been observed so frequently in early
numerical simulations and experiments of two-dimensional flows.

Support for this research has come from the UK Natural Environment Research
Council.
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